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1970 observed reflections- Coghi et al. do not list the
atomic parameters, but the over-all structure, including
the bond distances and angles, is in reasonable agree-
ment with our results.

Ward et al. describe their structure in a unit cell
that is slightly more convenient than the one we have
chosen (a=6-905(5), b=11-680(4), c¢=17-993(23) A,
f£=100-68(10)°; space group, P2,/n).

We are grateful to Dr B. D. Sharma for providing
the crystals and for advice and assistance in the early
stages of the investigation, and to the National
Science Foundation for financial support.
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Refinement of the Crystal Structure of Iron Oxychloride

By M.D. Linp »
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The lattice constants and the positional parameters of crystals of the compound FeOCl], the crystal
structure of which was reported more than 35 years ago, have been redetermined from single-crystal
X-ray diffraction data. Except for corrections to the lattice constants and positional parameters, the
previous description of the structure remains valid. The most probable space group is Pmnm. The
revised lattice constants, one of which differs substantially from those previously reported, are a=

3780 + 0-005, b="7-917 +0-005, and ¢ = 3-302+0-005 A

. The positional and anisotropic thermal param-

eters were refined by the method of least-squares, with 294 non-zero diffractometer data, to a conven-
tional R=0-055. Based on the refined parameters, the Fe3+-02- bond distances are 1-964 +0-008 and
2:100+ 0010 A, and the Fe3+-Cl- bond distance is 2:368 + 0-007 A.

Introduction

The crystal structure of the compound FeOCl], deter-
mined many years ago (Goldsztaub, 1934, 1935), was
refined because a more accurate description of the
structure was required for a proposed (Muir & Wieder-
sich, 1967a) redetermination of the nuclear quadrupole
moment of the 14-4 keV level of S7Fe (Q5"™Fe) from
FeOCl data.

This investigation may be expected to aid in resolvmg
the large discrepancies among values of Qs;nFe deter-
mined from data for other compounds [see discussions
by Grant (1966) and by Artman, Muir & Wiedersich
(1968)] because FeOCl has certain features which make
it especially suitable for determining this constant. An
unusually large ferricion nuclear quadrupole interaction
is observed in the S7Fe Mdssbauer spectrum of FeOCl
(Muir & Wiedersich, 1967a). Furthermore, evaluation

of the electric field gradient tensor at the ferric ion
sites in the crystal, which is required in the analysis, is
greatly facilitated by the small number of variable po-
sitional parameters in the FeOCI crystal structure and
by the constraints imposed by the crystal symmetry
and ferric ion site symmetry (see below).

In the proposed analysis, the particular step that
requires very accurate structural data is a lattice sum
calculation of the electric field gradient tensor com-
ponents. The high sensitivity of such calculations to
small variations in structural parameters has been dis-
cussed previously (Grant, 1966; Muir & Wiedersich,
1967h; Artman et al., 1968).

Experimental

Crystals of FeOCl were grown by G. P. Espinosa of
this Laboratory by a procedure similar to that reported
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by Goldsztaub (1935). A mixture of FeCl; and Fe,O;
in one end of an evacuated and sealed glass tube was
maintained at 350°, and the other end of the tube
about 25° cooler, for two weeks. The FeOCI crystals,
which grew in the cooler end of the tube, were similar in
their thin blade-like habit and red color to those de-
scribed by Goldsztaub.

From Buerger precession photographs taken at
23°C, the most probable space group, Pmnm-D}3, re-
ported by Goldsztaub (1934, 1935), was confirmed, and
the lattice constants were measured. The crystallo-
graphic data are summarized in Table 1. The presently
reported values of @ and ¢ agree satisfactorily with the
values, 3-75 and 3-3 A respectively, given by Gold-
sztaub (1934, 1935). The presently reported value of b
agrees reasonably well with the value of 7-95 A in the
first of Goldsztaub’s two papers on the FeOCI struc-
ture, but differs substantially from his subsequently
revised value, in the second paper, of 7:65 A, which
must be concluded to be erroneous. As Goldsztaub
(1935) pointed out, the thinness of the crystals in the
b direction causes difficulty in determining & from
b-axis rotation photographs. However, there is no such
difficulty in the case of the Buerger precession photo-
graphs, from which the value of b appeared to be deter-
minable with about the same accuracy as a and c. The
presently reported values of the lattice constants were
confirmed during the course of diffractometer measure-
ment of the intensities.

Table 1. Crystallographic data for FeOCl

Space group: Pmnm-Dyp!3

Latticc constants: a=3-780 1-0-005 A
b=7-917 + 0-005
¢=3-302+0-005

Unit-cell volume =98-82 A3

Unit cell contains 2FeOCl

Formula weight=107-3

Calculated density =3-606 g.cm~3

Measured density = 3-55 g.cm~3 (Goldsztaub, 1935)

Systematic absences: #0/ with A+/ odd

Intensities were measured with a Buerger—Supper-
Pace-Picker automatic diffractometer, Mo K« radia-
tion, and balanced Zr and Y filters. The crystal was
rotated about the ¢ axis. The continuous scan mode
was used, with a scan rate of 1° per minute, scan inter-
val of 2° or more, and background counts of 60
seconds or more at the beginning and at the end of the
scan interval. All independent I(hkl) with (sin 8)/4
<099, a total of 500, were measured. Of these, 308
were greater than the background intensity. One re-
flection, 010, partially cut off by the beam stop, was
estimated visually from a precession photograph. Un-
fortunately, it was found during the course of the re-
finement that the scan interval had not been made wide
enough for the reflections 112, 113, 114, 204, 115, 225,
016, 116, 046, and 206, causing their measured inten-
sities to be lower than their true intensities. It was
decided to omit these ten reflections from the refine-
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ment calculations, rather than to remeasure them, be-
cause the remaining data were more than adequate to
solve the problem.

The crystal used for the intensity measurements was
a thin rectangular plate with dimensions 0-42 (parallel
to rotation axis, ¢)x0-10 x0-005 mm. The intensities
were corrected for absorption by the method of Burn-
ham (1966). The linear absorption coefficient for
Mo Kua radiation is 86-6 cm~!. The correction factors
were between 1-04 and 1-79.

The intensities were reduced to relative |Fo(hk/)|2 by
application of the usual Lorentz-polarization and
Tunell factors.

Refinement of the structural parameters

All the atoms are in twofold mm special positions of
space group Pmnm: the two Fe3* ions are in the posi-
tions (b) with coordinates 0,y,4 and 4,7,0; the two
02~ and two Cl- ions are in two sets of positions (a)
with coordinates 0,y,0 and 4, ,1. Thus there are three
variable positional parameters, one for each of the
three atoms comprising the asymmetric unit. There are
nine anisotropic thermal parameters, three for each
of the three atoms.

The positional parameter values given by Gold-
sztaub (1934, 1935), yre=0-097, yo=—0-083, and
yc1=0-305, were taken as the starting values for the
refinement.

The parameters were refined by the method of
least-squares with the Busing, Martin & Levy (1962)
computer program ORFLS. The function minimized
was > w(|Fy| — (1/k)| Fel)?, in which k is a scale factor and
w is a weighting function (for |F,|>14, w=200/
| Fol?; for 14] > | Fo = | Fo,min], w=1). Only the |Fy| above
background were included in the least-squares calcula-
tions. Fourteen non-zero reflections were omitted from
the least-squares calculations: 010, which was estimated
visually; 002, 004, and 006, for which peak-heights
rather than integrated intensities were measured; and
the ten reflections mentioned earlier. However, during
all refinement cycles, structure factors were calculated
for the unobserved data and for the omitted non-zero
reflections.

Scattering factors and dispersion corrections for
Fe3+ and Cl- were taken from International Tables for
X-ray Crystallography (1962); for O?-, the scattering
factors given by Tokonami (1965) were used.

The refinement was carried out first with isotropic
and finally with anisotropic thermal parameters. The
procedure was repeated with atomic, rather than ionic,
scattering factors, but this did not produce any signi-
ficant changes in the parameter values or in the final
value of the agreement index R=3||Fo|—|Fell/2|Fol.
The final parameter values are given in Table 2. All
three positional parameters differ substantially from
the previously reported values. Comparison of the
| Fol with the |Fe| calculated from the final parameter
values is shown in Table 3. The final value of R is 0-055
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for the data included in the least-squares calculations.
For the unobserved reflections and the other reflec-
tions omitted from the least-squares calculations,
Table 3 shows the agreement of |F,| and |F¢| to be
satisfactory.

Table 2. Positional and thermal parameters and their
estimated standard errors*

105y 1058111 105852
11568 (13) 791 (35) 362 (11)
—4832 (61) 1113 (189) 293 (46)
33003 (22) 3649 (105) 392 (17)

* The estimated standard errors (x 105) are given in
parentheses.

T The pi; are for the temperature factor expression
exp [—(B11h2 + Br2k2 + B33l2 + Zﬁlzhk +2B13hl+ 2B23kD)]; for all
three ions the site symmetry requires f12=p513=/23=0.

105833
2481 (64)
2432 (324)
2403 (119)

Fe3+
02-
Cl-

Discussion of the structure

The structure is illustrated in Fig.1. Bond distances,
bond angles, and other interatomic distances, computed
with the Busing, Martin & Levy (1964) computer pro-
gram ORFFE, are given in Table 4.

Except for the corrections to the lattice constants and
positional parameters found in the present investiga-
tion, Goldsztaub’s (1934, 1935) description of the
structure remains valid. The structure consists of neu-
tral layers, of composition FeOCI, oriented perpendic-

REFINEMENT OF THE CRYSTAL STRUCTURE OF IRON OXYCHLORIDE

Table 4. Interatomic distances and angles*

Fe3+-02- 1:964 £+ 0-008 A
Fe3*+-02- 2:100£0-010
Fe3*-Cl- 2-368 + 0-007

02- -02- 2:624+0-011
02~ -02- 3-302 4+ 0-005
02- -CI- 2:995+0-017
02- -CI- 3:3574+0-012
Cl-—CI- 3:302+ 0-005

1-—Cl- 3:680+0-006
Fe3+-Fe3* 3-107 £ 0-008

02~ —Fe3+-02- 80-34+0-21°
02~ -Fe3*-02- 103-64 + 0-66
02- -Fe3*+-Cl- 83:97+0-43
02~ -Fe3+-Cl~- 101-224+0-31
Cl-—Fe3*+-Cl- 8842+0-35
02~ -Fe3*+-02- 148-48 +0-88
02- -Fe3+-Cl- 172:39+0-30

Bond distances

Edges of octahedra

Intralayer distance
Intralayer distance

Bond angles

* The limits of error are 3 x the estimated standard errors
computed by the program ORFFE.

ular to the b direction. The translational period along
b contains two layers. The layers are formed by the
sharing of O-O and O-Cl edges of cis-FeCl,0, octa-
hedra. The outermost atoms on each side of the layers
are the Cl- ions. The Cl- ions of adjacent layers are
approximately close packed. As Goldsztaub (1934,
1935) pointed out, the arrangement accounts very

Table 3. Comparison of 10 x |F,| with 10 x |F¢| calculated from final parameter values

Also listed are the calculated values of 10 x a=10 x tan~1(B/A4). Within each reciprocal lattice level / the data are in the order
of increasing detector angle. The 14 non-zero data omitted from the least-squares calculations are indicated by asterisks.
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well for the perfect cleavage plane perpendicular to
b and for the flexibility of the crystals, which allows
them easily to be bent and then returned to their ori-
ginal shape.

Each Fe3+ ion is bonded to two O?~ ions at a distance
of 1:964+0-008 A and to two others at a distance of
2:100+0-010 A. The average of these distances is
2:03 A. These distances are nearly the same as the
Fe3+-0O2- bond distances in a-Fe,O; (hematite), the
structure of which was recently refined by Blake,
Hessevick, Zoltai & Finger (1966). In a-Fe,O; each
Fe3+ ion is bonded to three O2~ ions at a distance of
1-945 A and to three others at a distance of 2:116 A,
in an octahedral arrangement. These distances also
average to 2:03 A. The Fe3+-O2- bond distances in
FeOCI are also nearly the same as the Fe3+-0O2- bond
distances reported for y-FeOOH (lepidocrocite), the
structure of which is closely related to that of FeOCI.
In y-FeOOH there are layers similar to those in FeOCl,
with OH- ions instead of Cl- ions. The Fe3*—02- bond
distances in y-FeOOH, 1-94 and 2-14 A, which average
to 2:04 A, were reported by Goldsztaub (1935) at the
same time as his results on FeOCl. These average
Fe3+-02- distances are all somewhat longer than the
octahedral Fe3*-0O2- distances in garnets (Lind &
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Geller, 1969, and references cited therein) and in
perovskite-like structures (Coppens & Eibschiitz, 1965).

The Fe3*—Cl- bond distance, 2-368 +0-007 A, is
practically the same as the Fe3*-Cl- bond distance,
2:39 A, in FeCl; (Wooster, 1932). It is substantially
greater than the Fe3*—Cl- bond distance of 2:30 A
found in the trans-[FeCl,(H,0)4]* ion (Lind, 1967).
Interference between Cl- ions in cis positions is prob-
ably the reason for the longer Fe3+-Cl- distances in
FeOCl and FeCls.

The FeCl,0, octahedron in FeOCl is considerably
distorted. The edge lengths vary from 2624 to 3-357 A.
(The edge lengths not given in Fig.1 are those of the
Cl-—Cl- and 0O2--02- edges parallel to ¢, which are
equal to the lattice constant ¢.) The shortest O2~—02-
and O2--Cl- edges of the octahedron, 2:624 A and
2:995 A respectively, are those which are shared with
other octahedra. The packing of the four O2~ and two
Cl- ions about the Fe3* ion is such that the centers of
all the O?~ ions are well within one hemisphere about the
Fe3+ ion, opposite to the Cl- ions. The O2——Fe3!-02-
and O2-Fe3*-Cl- angles between bonds directed
toward opposite corners of the octahedron are 148-48
and 172-39° respectively. These may be compared with
an O?—Fe3t-02- angle of 162:21° in the «-Fe,0,

a=3780A <

Key:
O Fe3*at z=0

O 02" at z=0
O Ct~ at z=0

Fig. 1. Projection of structure on (001) showing four complete unit cells.

QD Fe* at 2=,
@ 02~ at z= 1,
@ Cl- at z=Y,
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structure (Blake, et al., 1966). The other bond angles at
the Fe3* ion are in the range 80-34 to 103:64°, which
is about the same as that reported for «-Fe,O; (Blake,
et al., 1966).

The interlayer Cl—Cl- distance, 3:680 A, closely
approximates twice the van der Waals radius of
chlorine. .

The principai axes of the thermal motion probability
ellipsoids are required by the crystal symmetry to be
par .‘cl to the crystallographic axes (as are the prin-
cipal axes of the electric field gradient tensors, which
were discussed in the Introduction). The root-mean-
square components of thermal displacement along the
three principal axes of the thermal motion probability
ellipsoids are given in Table 5; these were computed
with the Busing, Martin & Levy (1964) computer pro-
gram ORFFE.

Table 5. Thermal motion probability ellipsoids

Root-mean-square component of thermal displacement* along
principal axis parallel to

a b c
Fe3*  0-076+0005A 0:107+£0-005A 0:117+0:005 A
02~ 0-090+0-023  0-097+0-023  0-116+0-023
Ccl- 0-163+0-:007  0:112+0-007  0-115+0-008

* The limits of error are 3 x the estimated standard errors
computed by the program ORFFE.

Acta Cryst. (1970). B26, 1062
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crystals. He thanks S. Geller and R. W. Grant for
helpful discussions during the preparation of the manu-
script.
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The Relation Between y- and o-Chymotrypsin. I1.*
Direct Comparison of the Electron Densities at 55 A Resolution

By GERsON H. CoHEN, B.W.MATTHEWST AND DAvID R.DAVIES

Laboratory of Molecular Biology, National Institute of Arthritis and Metabolic Diseases, National Institutes
of Health, Bethesda, Maryland 20014, U.S.A.
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Extensive comparisons have been made between 5-5 A resolution electron density maps of the two
molecules in the asymmetric unit of a-chymotrypsin, and between the a-chymotrypsin electron density
and a 55 A electron density map of y-chymotrypsin. The transformations describing the relation be-
tween the respective pairs of molecules have been refined by a least-squares method. On the basis of
these comparisons the respective electron density maps are shown to be identical, within experimental
error. It is concluded that at this resolution there is no significant evidence of any conformational dif-
ference between the two a-chymotrypsin molecules or between a- and y-chymotrypsin.

Introduction

a-Chymotrypsin (xCHT) and y-chymotrypsin (yCHT)
are the end products of the activation of chymotryp-
* The first paper of this series is Matthews, Cohen, Silver-
ton, Braxton & Davies (1968).
t Present address: Institute of Molecular Biology, Univer-
sity of Oregon, Eugene, Oregon 97403, U.S.A.

sinogen A and are distinguished by their respective
crystal forms (Kunitz, 1938; Desnuelle, 1960). «xCHT
crystallizes at pH 4-4 in a monoclinic space group with
two molecules per asymmetric unit and the structure
has been determined to atomic resolution (Matthews,
Sigler, Henderson & Blow, 1967; Sigler, Blow, Matth-
ews & Henderson, 1968). yCHT crystallizes at pH 56
in a tetragonal space group and a 5-5 A resolution elec-



